« 立体図形の切り口 第59問 (灘中学 入試問題 2014年(平成26年) 算数) | トップページ | 平面図形の長さ 第43問 (洛南高校附属中学 入試問題 2014年(平成26年度) 算数) »

2014年2月18日 (火)

計算問題 第99問 約束記号 (ラ・サール中学 受験問題 2014年(平成26年度) 算数)

 

問題 (ラ・サール中学 受験問題 2014年 算数)

     難易度★★★

 

整数A の一の位の数を<A>で表し、一番高い位の数を【A】で

表します。たとえば、17×17=289 なので、<17>=7、

<17×17>=9、【17】=1、【17×17】=2 です。このとき

次の問に答えなさい。

 

(1)10個の和 <1×1>+<2×2>+<3×3>+・・・

              ・・・+<10×10> を求めなさい。

(2)2014個の和 <1×1>+<2×2>+<3×3>+・・・

              ・・・+<2014×2014>を求めなさい。

(3)【A】×<A×A>=8 となる2ケタの整数A をすべて

   求めなさい。

----------------------------------------------

----------------------------------------------

解答

 (1)<1×1>=1 <2×2>=4 <3×3>=9

   <4×4>=6 <5×5>=5 <6×6>=6

   <7×7>=9 <8×8>=4 <9×9>=1

   <10×10>=0

なので、1+4+9+6+5+6+9+4+1+0=45 です。

 

 (2)<1×1>+<2×2>+<3×3>+・・・

              ・・・+<10×10>

のくり返しが、201回と、

<1×1>+<2×2>+<3×3>+<4×4>があるので、

  45×201+1+4+9+6=9065

となります。

 

 (3)【A】×<A×A>=8 で、

    8=1×8=2×4=4×2=8×1

なので、<A×A>として1,2,4,8が考えられますが、

(1)より、<A×A>で作れるのは、このうち1と4だけです。

 

よって、【A】×<A×A>=8×1 または 2×4 です。

 

【A】×<A×A>=8×1 の場合

Aは2ケタの整数で、10の位が8、1の位は1または9で、

A=81、89 が考えられます。

 

【A】×<A×A>=2×4 の場合

Aの10の位が2、1の位は2または8で、

A=22、28 が考えられます。

 

よって、【A】×<A×A>=8 となるAは、

 22,28,81,89

の4つです。

 

 

 ラ・サール中学の過去問題集は → こちら

 ラ・サール中学の他の問題は → こちら

 

|

« 立体図形の切り口 第59問 (灘中学 入試問題 2014年(平成26年) 算数) | トップページ | 平面図形の長さ 第43問 (洛南高校附属中学 入試問題 2014年(平成26年度) 算数) »

コメント

コメントを書く



(ウェブ上には掲載しません)




トラックバック


この記事へのトラックバック一覧です: 計算問題 第99問 約束記号 (ラ・サール中学 受験問題 2014年(平成26年度) 算数):

« 立体図形の切り口 第59問 (灘中学 入試問題 2014年(平成26年) 算数) | トップページ | 平面図形の長さ 第43問 (洛南高校附属中学 入試問題 2014年(平成26年度) 算数) »