« 食塩水の濃度 第16問 (灘中学 受験問題 2012年(平成24年度) 算数) | トップページ | 場合の数 並べ方 第55問 図形 (早稲田中学 受験問題 2012年(平成24年度) 算数) »

2012年6月13日 (水)

規則性の問題 操作 第24問 (筑波大学附属駒場中学 入試問題 2001年(平成13年度) 算数)

 

問題 (筑波大学附属駒場中学 入試問題 2001年 算数)

     難易度★★★

 

表裏のあるコインが何枚からあり、初めはどのコインも表が上を

向くようにして重ねます。このとき、次の問に答えなさい。

 

(1)コインが3枚のとき、1回目の操作は一番上の1枚をひっくり

   返し、2回目の操作は上から2枚を重ねたままいっぺんに

   ひっくり返し、3回目の操作は3枚全部を重ねたままいっぺん

   にひっくり返し、4回目の操作は再び一番上の1枚をひっくり

   返し、このあとも同じように、上から2枚、3枚全部、一番上の

   1枚、・・・とひっくり返して操作を続けます。

   (ア)はじめて全部のコインの表が上を向くのは、操作を何回

      したときですか。

   (イ)操作を100回したとき、表が上を向いているコインは

     何枚ありますか。

 

(2)コインが2枚のとき、1回目の操作は上の1枚をひっくり返し、

   2回目の操作は2枚全部を重ねたままいっぺんにひっくり返し、

   3回目の操作は再び上の1枚をひっくり返し、この後も同じ

   ように、2枚全部、上の1枚、・・・とひっくり返して操作を続け

   ます。操作を100回したとき、2枚のコインはそれぞれ、表裏

   どちらの面が上を向いていますか。

---------------------------------------------

---------------------------------------------

解答

 (1)(ア)操作をくり返していって、最初の状態にもどるまで、

どのように変化していくのか、地道に調べていきましょう。

 

表を○、裏を×として、3枚のコインが重なっている様子を

表すと、最初は上から「○×○×○×」です。1回目の操作を

すると、「×○○×○×」です。2回目の操作をすると、

「×○○×○×」です。3回目の操作をすると、これが

ひっくり返るので、「×○×○○×」となります。

 

これを表のように書くと、下の図1のようになり、

  Pic_2536q_2

初めて全部のコインの表が上を向くのは、操作を9回したとき

ということがわかります。

 

 (1)(イ) (ア)の図1より、9回の周期でコインが変わっていく

ことがわかるので、100回の操作をしたときは、

  100÷9=11あまり1 なので、1回の操作をしたときと同じで、

表が上を向いているコインは、2枚 です。

 

 (2)(1)と同様に、コインの表裏をそれぞれ○、×として、

コインの様子を調べていくと、3回目の操作をすると、2枚とも

表が上を向く状態になりますが、ここで早とちりをしてはいけません。

 

下の図2のように、3回目の操作が終わったとき、4回目の操作を

するとき、2枚のコインを重ねたままひっくり返します。

はじめの状態では、上の1枚のコインだけひっくり返します。

この点で、最初の状態に戻ったとは言えません。

     Pic_2537a

上の図2のように、調べていくと、8回目の操作をすると、

2枚とも表が上を向き、最初の状態に戻ります。

 

よって、100回の操作をしたときは、

   100÷8=12あまり4 なので、

4回目の操作をしたときと同じで、2枚のコインは両方とも

裏が上を向いていることがわかります。

 

 地道に調べる忍耐力と、注意力が問われる問題でした。

 

 

 筑波大学附属駒場中学の過去問題集は → こちら

 筑波大学附属駒場中学の他の問題は → こちら

 

|

« 食塩水の濃度 第16問 (灘中学 受験問題 2012年(平成24年度) 算数) | トップページ | 場合の数 並べ方 第55問 図形 (早稲田中学 受験問題 2012年(平成24年度) 算数) »

コメント

コメントを書く



(ウェブ上には掲載しません)




トラックバック


この記事へのトラックバック一覧です: 規則性の問題 操作 第24問 (筑波大学附属駒場中学 入試問題 2001年(平成13年度) 算数):

« 食塩水の濃度 第16問 (灘中学 受験問題 2012年(平成24年度) 算数) | トップページ | 場合の数 並べ方 第55問 図形 (早稲田中学 受験問題 2012年(平成24年度) 算数) »